Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

A forma como células do câncer se espalham é mais assustadora do que se pensava

Publicado em 20/04/2016 • Notícias • Português

As células do câncer têm uma maneira aterrorizante e engenhosa de passar até mesmo através dos menores vasos sanguíneos e se espalhar por todo o corpo humano, de acordo com um novo estudo realizado por pesquisadores do Massachusetts General Hospital (MGH). Descobrir como impedi-las de fazer isso pode ajudar a conter esta doença mortal.

_x000D_

O câncer se espalha por todo o corpo – em um processo conhecido como metástase – quando determinadas células se rompem do tumor primário e entram na corrente sanguínea. A metástase está associada à maior parte (90%) das mortes relacionadas ao câncer.

_x000D_

Cientistas achavam que os aglomerados dessas células eram grandes demais para passar através de vasos capilares ultrafinos. Os pesquisadores do MGH descobriram que este não é o caso.

_x000D_

Esta é a parte aterrorizante: os aglomerados podem se reorganizar no formato de um fio, como esferas encadeadas, quando se deparam com um gargalo. Depois de passarem por vasos finos, as células simplesmente retomam o formato de aglomerado. A equipe publicou as descobertas no Proceedings of the National Academy of Sciences.

_x000D_

“Esta informação muda a narrativa padrão de como a metástase [começa], e nos permite desenvolver formas melhores de combatê-la”, diz o autor Sam Au em um comunicado.

_x000D_

De acordo com Au, este comportamento estranho parece estar ligado à interação entre as células de câncer no aglomerado. Células interagem umas com as outras o tempo todo; neste caso, as ligações são tão fortes que o aglomerado pode facilmente se reconfigurar, sem danificar as células individuais ou impedi-las de se proliferar no futuro.

_x000D_

Separando os aglomerados

_x000D_

Os cientistas já suspeitavam que os aglomerados de “células tumorais circulantes” (CTCs) têm papel fundamental na propagação do câncer. Por exemplo, estudos anteriores mostraram a presença de aglomerados bem grandes nas veias dos braços de pacientes falecidos, longe do local do tumor original.

_x000D_

Isso significa que os aglomerados devem ter passado até mesmo pelos menores vasos sanguíneos, conhecidos como capilares. Mas os cientistas não tinham ideia de como os aglomerados – muito maiores do que esses vasos – conseguiam esse feito.

_x000D_

O motivo: essas células são muito raras, e é extremamente difícil separá-las dos bilhões de outras células flutuando na corrente sanguínea. É o velho problema da agulha no palheiro, dificultando estudá-las de perto.

_x000D_

Para separar os aglomerados, a equipe do MGH contou com avanços recentes na microfluídica, área da ciência que lida com o comportamento de fluidos em canais microscópicos. Ela permite criar “laboratórios em um chip” que podem processar rapidamente grandes volumes de sangue.

_x000D_

Com estes chips microfluídicos, é possível identificar aglomerados de câncer através de um processo chamado de “esgotamento negativo”. Você remove sucessivamente 999 bilhões de células, depois 999 milhões de células, depois 999 mil células, e assim por diante, até chegar ao um punhado de células tumorais.

_x000D_

Estudo

_x000D_

No ano passado, o coautor Mehmet Toner usou um chip desses para determinar que os aglomerados eram mais comuns na corrente sanguínea do que se acreditava anteriormente.

_x000D_

Para o estudo mais recente, a equipe usou duas abordagens. Primeiro, eles gravaram canais no chip que se afunilam em pontos-chave, formando gargalos mais ou menos com a mesma largura de vasos capilares. Em seguida, eles filmaram o movimento dos aglomerados de CTC dentro desses canais:

_x000D_

Em segundo lugar, a equipe do hospital injetou aglomerados de células humanas de câncer nos vasos sanguíneos de peixes-zebra embrionários. Eles foram escolhidos porque seus vasos transparentes facilitam a obtenção de imagens, e também porque têm vasos aproximadamente do mesmo tamanho de capilares humanos.

_x000D_

Em ambos os casos, os aglomerados simplesmente se desdobraram em uma cadeia longa para passar através do gargalo, e depois se reorganizaram em um aglomerado de novo. Isto acontecia mesmo com grandes grupos com mais de 20 CTCs.

_x000D_

A boa notícia: isto fornece uma pista para possivelmente limitar a sua propagação. “Se nós pudermos mudar essa força entre as células, seja quebrando aglomerados ou impedindo-os de se desdobrar, poderíamos controlar a sua capacidade de passar por vasos estreitos”, diz Au.

Fonte: Gizmodo/PNAS via Massachusetts General Hospital

Mais notícias e eventos